
www.manaraa.com

BI as an Assertion Language for Mutable Data Structures

Samin Ishtiaq Peter W. O’Hearn

Queen Mary & Westfield College, London

ABSTRACT
Reynolds has developed a logic for reasoning about muta-
ble data structures in which the pre- and postconditions are
written in an intuitionistic logic enriched with a spatial form
of conjunction. We investigate the approach from the point
of view of the logic BI of bunched implications of O’Hearn
and Pym. We begin by giving a model in which the law of
the excluded middle holds, thus showing that the approach
is compatible with classical logic. The relationship between
the intuitionistic and classical versions of the system is es-
tablished by a translation, analogous to a translation from
intuitionistic logic into the modal logic S4. We also con-
sider the question of completeness of the axioms. BI’s spa-
tial implication is used to express weakest preconditions for
object-component assignments, and an axiom for allocating
a cons cell is shown to be complete under an interpretation
of triples that allows a command to be applied to states with
dangling pointers. We make this latter a feature, by incor-
porating an operation, and axiom, for disposing of memory.
Finally, we describe a local character enjoyed by specifica-
tions in the logic, and show how this enables a class of frame
axioms, which say what parts of the heap don’t change, to
be inferred automatically.

1. INTRODUCTION
Pointers are an extremely powerful and flexible program-

ming mechanism, useful for manipulating linked data struc-
tures and for providing structured access to data in memory.
They are also extremely dangerous. Pointer-manipulating
programs are notoriously difficult to get right, and even lead
to runtime safety violations (such as from dereferencing nil

or a disposed pointer) which lie beyond the range of conven-
tional type systems. An effective program-proving formal-
ism for dealing with pointers would be most welcome.

But pointers have also always been one of the thorny
patches of program proving. The most immediate issue to
face is that the Hoare substitution-oriented treatment of as-

To appear in the Proceedings of the 28th ACM-SIGPLAN Symposium on
Principles of Programming Languages, London, January 2001

signment

{P [E/x]}x := E{P}

does not cope with component assignments of the form E.i :=
E′ (or E → i = E′ in C syntax) that alter the heap. Other
issues are raised by operations for allocating and, especially,
disposing of memory. A number of researchers have devel-
oped program-proving formalisms for pointers (e.g., [16, 30,
23, 17, 22, 3, 6]), but no definitive solution has emerged as
of yet. Most importantly, lying behind technicalities with
axioms for assignment and storage management is a deeper
difficulty, the “complexity of pointer swing [15]” that results
from aliasing : there can be more than one pointer to a cell
that is altered, in which case assignment to the cell affects
seemingly unrelated expressions. The real problem is to con-
trol, or understand, this complexity, rather than simply to
axiomatize it.

A striking advance has been recently made by Reynolds
[35], building on early work of Burstall [5]. The main nov-
elty is the use of a spatial form of conjunction P ∗ Q, that
splits the heap into distinct portions that the different con-
juncts talk about. In addition, there is a form of assertion,
the points-to relation 7→, which is used to make statements
about the contents of heap cells. For instance, the spatial
conjunction (x 7→ 3, y) ∗ (y 7→ 4, x) says that x and y denote
distinct locations, where the cdr of x is a pointer to y, the
cdr of y is a pointer to x, and where the car’s contain 3 and
4.

6& %
r

r r

r?-
?

3 4

x y

The combination of ∗ and 7→ leads to remarkably simple
axioms. In particular, when an assertion of the form P ∗
(x 7→ a, b) holds prior to a component assignment x.1 := z
we know that the assignment cannot affect P , and so P ∗
(x 7→ z, b) will hold on conclusion. The logic of pointer
swing is treated in a local way that mirrors the intuitive
operational locality of assignment.

In this paper we investigate the approach from the point
of view of the logic BI of O’Hearn and Pym [25]. The most

www.manaraa.com

distinctive feature of BI is its joint treatment of two implica-
tion connectives. One implication,⇒, is from standard intu-
itionistic or classical logic, while the other, −∗ , is the impli-
cation for a basic substructural logic. Reynolds’s assertion
language is already substructural: it adds a Contraction-free
conjunction, where P and P ∗P are not generally equivalent,
to intuitionistic logic: BI’s −∗ is related to ∗ by the deduc-
tion theorem, which states that a consequence A |= B−∗C
holds iff A ∗B |= C does. There is also a version of the de-
duction theorem which relates⇒ and the usual conjunction
∧.

The basic idea of BI’s semantics is to allow statements
to be made about the world using familiar connectives such
as ⇒, ¬ and ∧, and then to combine these statements in a
modular way using ∗ and −∗ . The key to this is the resource
interpretation of the connectives, where ∗ decomposes the
current resource into pieces and −∗ talks about new or fresh
resource [25, 26]. Substructural logics may appear rather
exotic beasts. But the pointer models we present provide
a very concrete and, we believe, intuitive way of under-
standing the connectives, quite apart from overtly logical
concerns.

With this as background, we now describe the main con-
tributions of the paper. These fall under three headings: (i)
Classical versus Intuitionistic; (ii) Completeness Issues; (iii)
Local Reasoning.

Classical or Intuitionistic? . Reynolds used an intuition-
istic interpretation of pre- and postconditions in his logic.
This was presented in a possible worlds style, which treats
negation and implication by quantifying over all extensions
to the current heap [19], and gives rise to a monotonicity
property where all propositions are invariant under heap
extension. Although the intuitionistic semantics is intu-
itive, it seemed to us reasonable to ask: might the law of
the excluded middle be compatible with the axioms for as-
signment and other statements? Reynolds gave an exam-
ple which indicates that his axioms are unsound under a
“straightforward” classical reading, but left open the ques-
tion of whether a different classical semantics might be pos-
sible.

We answer by presenting a classical model, which is a
possible worlds model of Boolean BI (where ¬ and ⇒ are
classical), and which validates all of the axioms for Hoare
triples. In this model the worlds are heaps (collections of
cons cells in storage), and the conjunction P ∗Q is true just
when the current heap can be split into two components, one
of which makes P true and the other of which makes Q true.
The implication P−∗Q talks about new or fresh pieces of
heap, disjoint from the current heap. It says that, whenever
we are given new heap that makes P true, the combined new
and current heap will make Q true. The other connectives
are interpreted pointwise in this model; for example ¬P is
true of a world just if P is not true of that world.

Perhaps more significant than excluded middle is that the
classical semantics is more expressive than the intuitionis-
tic one. In particular, it allows the specification of exact
properties of the heap, such as “the heap is empty”, which
cannot be expressed in the intuitionistic semantics because
they are not invariant under heap extension.

We work with the classical semantics for most of the pa-
per, but consider the relation to the intuitionistic model
in Section 9. We describe a translation from intuitionistic
to classical which is similar to a standard translation from

intuitionistic logic to the modal logic S4, thereby showing
that all intuitionistic properties can be expressed within the
classical setup.

Completeness Issues. Although the treatment of assign-
ment given by Reynolds, and by Burstall, is very elegant, at
first sight its simplicity appears to come at the price of forc-
ing assertions to be written in a stylized form, which would
not allow certain programs to be verified. This would per-
haps be a price worth paying, but we show that the weakest
precondition can in fact be expressed. The crucial point
for this is an interesting interaction between the −∗ and ∗
connectives. For example, we will explain in Section 3.1 how

(x 7→ 3, 5) ∗ ((x 7→ 7, 5)−∗P)

says that x points to a cell holding 〈3, 5〉, but also that if
we update the car to 7 then P will be true. We would
expect this to be a valid precondition for a postcondition
P with assignment statement x.1 := 7, where the indicated
assignment sets the first component of (the cons cell denoted
by) x to 7.

We show how the weakest precondition for each atomic
statement can be expressed in the logic. The semantics
used for this result is based on an interpretation of triples
that allows commands to be applied to states with dangling
pointers. Dangling pointers also play an essential role in the
interpretations of −∗ and ∗. We make this a feature by con-
sidering an operation that disposes of memory (thereby cre-
ating dangling pointers). Since disposing memory is such a
devastatingly effective method of introducing programming
errors, we were pleasantly surprised to find that the ap-
proach allows for a simple axiom which enables programs
with disposal to be proven. The semantics of triples we use
is one that supports the slogan well-specified programs don’t
go wrong , where going wrong could result from, say, deref-
erencing nil or a disposed pointer.

The classical semantics presented in this paper came after
the intuitionistic semantics, and we must admit that it took
some time to get used to. (The intuitionistic semantics was
discovered independently by us, while we were working from
an early version of [35].) Ultimately, the classical model
seemed natural only after we had the courage to consider
disposal, where it is essential to be able to specify mem-
ory utilization exactly. Reynolds has since been braver still,
working with a generalization of the logic that encompasses
pointer arithmetic [36].

Local Reasoning. Above we mentioned the local way that
pointer swing is treated. We examine the sense in which
local reasoning extends to larger-scale operations. In fact,
one of the most promising suggestions in the approach of
Reynolds and Burstall is that verifications might be done
in a way that scales well, by localizing the effects of heap-
altering commands to certain of the conjuncts in an assertion
P1 ∗ · · · ∗ Pn.

We investigate this idea by formulating a rule for auto-
matically inferring certain frame axioms, which describe in-
variants of the heap. Traditionally, an inordinate amount of
effort needs to be spent specifying what a program doesn’t
change, so much so that these frame axioms distract from
the main concern – what changes. In the absence of point-
ers what doesn’t change can be succinctly summarized using
modifies clauses [14], which list the program variables corre-
sponding to locations that can be altered by a program. But
for pointers, which may include links to cells not named by

www.manaraa.com

variables in the program, the problem is much more acute;
we show how the conjunction ∗ can be used to derive such
axioms. The point is that this allows specifications to be
kept “small”, where they describe only the area of the heap
that a program actually acts on. Invariant properties for
other areas of the heap come for free.

2. COMMANDS AND BASIC DOMAINS
The imperative language that Reynolds deals with is a

simple command language, with Lisp-like expressions for ac-
cessing and creating cons cells. We will not give a full syntax
of commands, as the treatment of conditionals and looping
statements is standard. Instead, we will concentrate on as-
signment statements, which is where the main novelty of the
approach lies.

The commands we consider are as follows.

C ::= x := E
| x := E.i
| E.i := E′

| x := cons(E1, E2)

|
...

i ::= 1 | 2

Here, each of the E’s is a pure expression; that is, E does
not contain a dot. In E.i the i is assumed to be one of the
constants 1 or 2 (the extension to varying length records,
or named alternatives, is straightforward). The second and
third assignment statements read and update the heap, re-
spectively. The fourth creates a new cons cell in the heap,
and places a pointer to it in x.

Notice that these commands do not directly handle double-
dereferencing, such as x.1.2, where one looks more than one-
deep into the heap. One would have to break a use of such
an expression, either on the left or right of :=, into several
steps, possibly using auxiliary variables.1

An expression can denote an integer, an atom, or a cons
cell.

E ::= x Variable
| 42 Integer
| nil nil
| a atom
| · · ·

We have not given a full expression syntax; the only con-
straint is that an expression can be interpreted in the se-
mantic domain specified below.

We use the following semantic domains, which are as in
[35] (except for our restriction to binary cells, which is not
essential).

V al = Int ∪Atoms ∪ Loc
S = V ar ⇀fin V al
H = Loc ⇀fin V al × V al

Here, Loc = {`, ...} is an infinite set of locations, V ar =
{x, y, ...} is a set of variables, Atoms = {nil, a, ...} is the
set of atoms, and ⇀fin is for finite partial functions. We
call an element s ∈ S a stack, and h ∈ H a heap. There

1This restriction is similar to the form of assignment state-
ments sometimes used in intermediate languages for static
analysis of pointer programs.

is a deliberate distinction between the two: stack variables
are maintained according to a stack discipline and are not
allowed to alias one another; heap variables or pointers do
not obey a stack discipline. [We will not include an explicit
operation for allocating stack variables.]

We use dom(h) to denote the domain of definition of a
heap h ∈ H, and dom(s) to denote the domain of a stack
s ∈ S.

An expression is interpreted as a heap-independent value

[[E]]s ∈ V al

where the dom(s) includes the free variables of E.
The commands are interpreted using a relation ; on con-

figurations, where the configurations include triples C, s, h
and terminal configurations s, h, for s ∈ S and h ∈ H. We
assume the semantics of expressions to specify ;.

In the following rules we use r to range over elements
of V al × V al, πir for the first or second projection, and
(r | i 7→ v) to indicate the pair like r except that the i’th
component is replaced with v.

[[E]]s = v

x := E, s, h ; [s | x 7→ v], h

[[E]]s = ` ∈ Loc h(`) = r

x := E.i, s, h ; [s | x 7→ πir], h

[[E]]s = ` ∈ Loc h(`) = r [[E′]]s = v′

E.i := E′, s, h ; s, [h | ` 7→ (r | i 7→ v′)]

` ∈ Loc ` 6∈ dom(h) [[E1]]s = v1 , [[E2]]s = v2

x := cons(E1, E2), s, h ; [s | x 7→ `], [h | ` 7→ 〈v1, v2〉]

The location ` in the fourth case is not specified uniquely, so
a new location is chosen non-deterministically. We can also
include typical rules for sequencing, looping, etc. The rela-
tion ; is a one-step semantics, and these other constructs
would give rise to non-terminal configurations. We say that

• “C, s, h is stuck” in case there is no configuration K
such that C, s, h ; K, and

• “C, s, h is safe” in case C, s, h ;∗ K implies that K is
a terminal configuration s′, h′ or is not stuck.

Being stuck is a kind of runtime error. For instance, a com-
mand can get stuck by an attempt to dereference nil or an
integer. Note also that the semantics allows dangling ref-
erences, as in the stack [x 7→ `] with empty heap []. The
assignment x.1 := 2 is stuck for this stack and heap.

This definition of safety is formulated with partial correct-
ness in mind: with loops C, s, h could fail to converge to a
terminal configuration without becoming stuck.

3. A MODEL OF BOOLEAN BI
The pre- and postconditions for commands will be written

using the following formulae.

P,Q,R ::= α Atomic Formulae
| false Falsity
| P ⇒ Q Classical Implication
| emp Empty Heap
| P ∗Q Spatial Conjunction
| P−∗Q Spatial Implication
| ∃x.P Existential Quantification

www.manaraa.com

This syntax differs from that of Reynolds in three ways.
First, we consider the substructural implication −∗ and unit
emp from BI. The unit was not needed in [35] because in the
intuitionistic semantics the unit of ∗ is true (this is because
Weakening for ∗ is present). Second, we use the BI symbol
∗ instead of & for the spatial conjunction. Finally, because
we are in a Boolean situation we can define various other
connectives as usual, rather than taking them as primitive:
¬P = P ⇒ false; true = ¬(false); P ∨Q = (¬P)⇒ Q;
P ∧Q = ¬(¬P ∨ ¬Q); ∀x. P = ¬∃x.¬P .

The set free(P) of free variables of a formula is defined
as usual, as is the capture-avoiding substitution P [E/x].

The atomic formulae include an equality relation and the
points-to relation.

α ::= E = E′ Equality
| E 7→ E1, E2 Points to
| · · ·

In practice, one would also want atomic predicates describ-
ing inductive properties of the heap, or a recursive facility
which allows such properties to be defined.

3.1 Semantic Clauses
The semantics of assertions is given by a forcing relation

of the form

s, h |= P

which asserts that P is true of stack s ∈ S and heap h ∈ H.
It is required that dom(s) ⊇ free(P). The semantics is
organized in a possible worlds style, where the heaps are the
worlds. We use the following notation in formulating the
semantics:

• h#h′ indicates that the domains of heaps h and h′ are
disjoint;

• h·h′ denotes the union of disjoint heaps (i.e., the union
of functions with disjoint domains).

Here are the semantic clauses.

s, h |= E = E′ iff [[E]]s = [[E′]]s

s, h |= E 7→ E1, E2 iff {[[E]]s} = dom(h)
and h([[E]]s) = 〈[[E1]]s, [[E2]]s〉

s, h |= emp iff h = [] is the empty heap

s, h |= P ∗Q iff ∃h0, h1. h0#h1, h0 · h1 = h,
s, h0 |= P and s, h1 |= Q

s, h |= P−∗Q iff ∀h′. if h′#h and s, h′ |= P then
s, h · h′ |= Q

s, h |= false never

s, h |= P ⇒ Q iff if s, h |= P then s, h |= Q

s, h |= ∃x.P iff ∃v ∈ V al. [s | x 7→ v], h |= P

The points-to relation E 7→ E1, E2 looks one-deep into the
heap. In the classical semantics it is interpreted “exactly”,
by requiring that that E denotes the only cell in the current
heap. The semantics is flexible here, in allowing Ei in E 7→
E1, E2 to denote a location that is not in the domain of h.
For example, in

[x 7→ `, y 7→ `′], [` 7→ 〈2, `′〉] |= (x 7→ 2, y)

the location `′ is dangling, which is to say that it is not in
the domain of the heap.

The conjunction P ∗Q is true just when the current heap
can be decomposed into two constituents in a way that
makes P true of one constituent and Q true of the other.
With this definition, (x 7→ 3, y) ∗ (y 7→ 4, x) corresponds to
the box-and-pointer diagram from the Introduction. Notice
the importance of dangling pointers here: the store corre-
sponding to the left conjunct is

r

r r
?

-
?

3

x y

while that for the right is

6& %

r r

r??
4

x y

This model differs from the one in [35] in three ways.
First, the implication ⇒ is interpreted in a pointwise fash-
ion, which results in a classical semantics. This is a seman-
tics which uses the boolean algebra structure of the powerset
of H, rather than the 2-element boolean algebra. Second,
we include emp and −∗ . And third, the points-to relation
is interpreted exactly, where s, h |= E 7→ E1, E2 does not
imply s, h′ |= E 7→ E1, E2 whenever h′ is a bigger heap than
h (bigger in the sense of inclusion of partial functions).

We can express an inexact variant of points-to as follows

E ↪→ E1, E2 = (true ∗ E 7→ E1, E2).

Generally, true ∗ P says that P is true of some heap con-
tained in the current one. Conversely, if we were to take ↪→
as primitive then we could define 7→ in terms of it using the
formula

E ↪→ E1, E2 ∧ ¬
(
(¬emp) ∗ (E ↪→ E1, E2)

)
.

The different way that the two conjunctions ∗ and ∧ be-
have is illustrated by the following examples.

1. (x 7→ 1, 2) ∗ (x 7→ 1, 2) is never true, because, however
the heap is split up, x will be left dangling in one of
the conjuncts.

2. (x 7→ 1, 2)∧(x 7→ 1, 2) is equivalent to x 7→ 1, 2, and so
is true in the singleton heap where x points to 〈1, 2〉.

3. (x 7→ 1, 2) ∗ ¬(x 7→ 1, 2) can be true when x points to
a cell holding 〈1, 2〉 in the current heap, because the
heap can then be split into a singleton where (x 7→ 1, 2)
and another heap where x is dangling, thus making
¬(x 7→ 1, 2) true.

www.manaraa.com

4. (x 7→ 1, 2) ∧ ¬(x 7→ 1, 2) is never true.

The difference between ↪→ and 7→ shows up in the presence
or absence of Weakening for ∗.

1. P ∗ (x 7→ 1, 2) ⇒ (x 7→ 1, 2) is not always true, for
instance when the antecedent is true of a heap with
more than one defined location.

2. P ∗ (x ↪→ 1, 2)⇒ (x ↪→ 1, 2) is always true.

A crucial ingredient in the semantics of −∗ is the require-
ment h′#h, which has the effect of ensuring that h′ is a new
or fresh piece of heap. That is, its domain of definition must
be disjoint from the domain of the current heap h.

We can now explain the example

(x 7→ 3, 5) ∗
(
(x 7→ 7, 5)−∗P

)
from the Introduction. We claim that this formula says that
x denotes a cell which holds 〈3, 5〉 in the current heap, but
also that if we update the car to 7 then P will be true. To
see why, first note that the semantics of ∗ splits the heap,
say, '

&

r
??
�3

x

5

Rest
of
Heap

into two portions, one where (x 7→ 3, 5) holds and a second
heap where the location denoted by x is dangling:'

&

r
??
�

x

Rest
of
Heap

We have included a dangling pointer out of the rest of the
heap here to emphasize that the location might be refer-
enced from within a heap cell, as well as from x. Because
the association (x 7→ 3, 5) has been, in a sense, retracted by
deleting the association from the heap in the right conjunct,
this frees −∗ to extend the second heap with a different con-
tents for the location denoted by x. The semantics of −∗
and 7→ then ensure that P must be true when this second
heap is extended by binding x’s location to 〈7, 5〉.'

&

r
??
�7

x

5

Rest
of
Heap

So, the intuitive description in terms of updating follows
from several steps in the semantics, which add up to “update
as deletion followed by extension”. (We stress that x denotes
the same location at each step in this narrative , even when
that location is dangling; the update expressed is to the
heap, not the stack.)

3.2 Properties
The semantic consequence relation P |= Q between for-

mulae is defined to hold iff for all s, h, if s, h |= P then
s, h |= Q. This assumes that dom(s) ⊇ free(P) ∪ free(Q).

Proposition 1. The usual rules of classical logic are sound
for |=, along with

∗ is commutative and associative, with unit emp

P ′ |= P Q′ |= Q

P ′ ∗Q′ |= P ∗Q

R ∗ P |= Q

R |= P−∗Q
R |= P−∗Q R′ |= P

R ∗R′ |= Q

In particular, note that two versions of the deduction the-
orem hold at the same time:

R |= P−∗Q iff R ∗ P |= Q

R |= P ⇒ Q iff R ∧ P |= Q.

In [25], these properties were taken as the basis for a
natural deduction presentation of BI, where contexts were
bunches: trees built from two kinds of combining operator,
one corresponding to ∗ and the other to ∧. That presenta-
tion is (after we add reductio ad absurdum) equivalent, in
terms of provability, to the bunch-free presentation stated
in the proposition. The model in this section is a possible
worlds model for Boolean BI [25, 26].

Because we do not have Weakening (P ∗Q |= P) or Con-
traction (P |= P ∗P) for ∗, we are in the territory of substruc-
tural logic. To see why Contraction fails, consider x ↪→ 2, 3.
It can be satisfied in a heap with a cons cell whose contents
is 〈2, 3〉, but (x ↪→ 2, 3) ∗ (x ↪→ 2, 3) is false for every heap.
To see why Weakening fails, consider (x 7→ 2, 3)∗ (y 7→ 4, 5).
For this to be true the current heap must have size two, and
(x 7→ 2, 3) cannot then hold because it requires the current
heap to have size one.

The importance of restricting Contraction was brought to
the fore by linear logic [12, 13]. But it is important to realize
that BI takes a very different approach to the surrounding
additive connectives. To see this, consider that P−◦Q |=
P ⇒ Q always holds in linear logic, using the decomposition
P ⇒ Q = !P−◦Q and the rule of Dereliction for !. But here,

(x 7→ 1, 2)−∗ false 6|= (x 7→ 1, 2)⇒ false

because the antecedent can hold in a heap where x 7→ 1, 2
while the consequent cannot.

This shows that there can be no ! which decomposes P ⇒
Q into !P−∗Q in this model; this highlights the difference
between the joint treatment of −∗ and ⇒ in the model and
the approach of linear logic. Furthermore, it is not unusual
to use additive implications where 7→ appears to the left.
An example is when specifying that any defined location in
the heap is reachable; such a specification would be of the

www.manaraa.com

form ∀x. (∃ab. x 7→ a, b) ⇒ · · ·) (where to fill in the · · · we
could use an appropriate inductive definition).

Next, we consider the notion of purity.

Purity . We say that an assertion is syntactically
pure if it does not contain 7→ or I.

Recall that we do not have terms of the form E.i for field
selection within assertions: 7→ is the only way that an as-
sertion might look into the heap.

Proposition 2. Any synactically pure assertion is inde-
pendent of the heap: If P is a pure assertion then

s, h |= P iff s, h′ |= P .

As a result, pure assertions are completely additive: if P
and Q are pure, then

P ∗Q and P ∧Q are equivalent;

P−∗Q and P ⇒ Q are equivalent.

The first of these properties indicates a formal similarity be-
tween purity and “!” in linear logic [12]: we get Contraction
P |= P ∗P and Weakening P ∗Q |= P for pure propositions.
(This remark is independent of the issue of decomposing
⇒ into −∗ .) The second property shows a further similar-
ity with passivity in syntactic control of interference [34],
where additive and multiplicative function type constructs
agree on passive types [28].

3.3 Interpretation of Triples
Hoare triples are of the form {P}C {Q}, where P and Q

are assertions as above and C is a command. We adopt an
interpretation which ensures that well-specified commands
do not get stuck.

{P}C{Q} is true just when

if s, h |= P then C, s, h is safe and if
C, s, h ;∗ s′, h′ then s′, h′ |= Q

for all s, h where dom(s) ⊇ free(P) ∪ free(Q).

This is a partial correctness interpretation; with looping, it
would not guarantee termination. However, the safety re-
quirement rules out certain runtime errors and, as a result,
we do not have that {true}C{true} holds for all commands.
For example, {true}x := nil;x.1 := 3{true} fails. Gener-
ally, if we can establish {P}C{true} then we will know that
C is safe to execute in any state satisfying P .

4. THE REYNOLDS AXIOMS
We start with standard Hoare rules for sequencing, con-

sequence and simple assignment.

Sequencing

{P}C{Q} {Q}C′{R}
{P}C;C′{R}

Consequence

P |= P ′ {P ′}C{R′} R′ |= R

{P}C{R}

Simple Assignment

{P [E/x]}x := E{P}

In the Consequence rule, |= refers to the semantic conse-
quence relation for assertions. (Equivalently, we could re-
place |= by ⇒, and ask that the resulting implications hold
in every state in which the stack component binds all vari-
ables in the involved formulae.)

The first heap-accessing command is the statement x :=
E.i, which can read from both the stack and the heap, but
which only alters the stack. Here there are two things to
keep in mind. First, E will be a pure expression, which
doesn’t look into the heap. So, we will not consider an
assignment statement like x := y.1.2, which would have to
be broken into two steps. Second, we will expect E.i to be
determined by an assertion of the form E ↪→ E1, E2, which
lets us find its value.

Object-component Lookup

Suppose that the variables x1, x2 are not free in
E, and that x1 does not occur free in P . Then{

∃x1. P [x1/x] ∧ ∃x2. E ↪→ x1, x2

}
x := E.1{
P
}

The substitution in P [x1/x] is saying that P is true in the
postcondition, similarly to the simple assignment axiom, but
there is also additional information to make sure that xi is
the proper value. The axiom for the second selection E.2 is
obtained by rearranging x1 and x2 in the precondition.

We have used ↪→ in this axiom, where Reynolds used 7→.
In the intuitionistic semantics described later the two ver-
sions of the axiom are equivalent, but in the classical se-
mantics the version with ↪→ is preferable. If we had used
7→ instead of ↪→ in the classical case then the heap in the
precondition would be forced to be a singleton. This would
be sound, but not very useful.

Next,

Object-component Assignment

Suppose that the variables x1, ..., xm are not free
in E or E′. Then{

∃x1, ..., xm. (E 7→ E1, E2) ∗ P
}

E.1 := E′{
∃x1, ..., xm. (E 7→ E′, E2) ∗ P

}
The simplicity of this axiom is remarkable, and is where the
effect of 7→ and ∗ is coming through. The idea is that we
can simply slot E′ into the heap in the appropriate place.
The E.2 version has (E 7→ E1, E

′) in the postcondition.
Finally,

Cons

Suppose that the variables x1, ..., xm are not free
in E1, E2, that x and x′ are distinct from each
other and x1, ..., xm, that x′ is not free in E1, E2

or P . Let X ′ denote the result of substituting x′

for x in expression or assertion X. Then{
∃x1, ..., xm. P

}
x := cons(E1, E2){
∃x′, x1, ..., xm. P

′ ∗ (x 7→ E′1, E
′
2)
}

www.manaraa.com

Here, a new cell is created and a pointer to it is placed into
x; the newness of this cell is why it can be separated from
P ′ using ∗.

The following proof outline, for a piece of code for in-
serting a cell in the middle of a linked list, exemplifies the
workings of the axioms for pointer swing and heap extension.

{(x 7→ a, z) ∗ (y 7→ c, w)}
t := cons(b, y)
{(x 7→ a, z) ∗ (y 7→ c, w) ∗ (t 7→ b, y)}
{(x 7→ a, z) ∗ (t 7→ b, y) ∗ (y 7→ c, w)}
x.2 := t
{(x 7→ a, t) ∗ (t 7→ b, y) ∗ (y 7→ c, w)}

Proposition 3. The Reynolds axioms are true in the clas-
sical semantics.

5. COMPLETENESS ISSUES
We begin by discussing the Component Assignment ax-

iom. The way the axiom is formulated requires both the
precondition and the postcondition to be of a special shape,
and this raises the question: can the axiom be applied gen-
erally, or does it restrict our reasoning to situations where
the assertions are of a specific form?

Before answering this question, we formulate a backwards
axiom with the help of the form of update that can be ex-
pressed using ∗ and −∗ .

Backwards Component Assignment

Suppose that variables x and y are distinct and
not free in E, E′, or P . Then{

∃xy. (E 7→ x, y) ∗ ((E 7→ E′, y)−∗ P)
}

E.1 := E′{
P
}

The E.2 version is similar. The backwards version can ob-
viously be applied generally, since it works for any postcon-
dition.

In a draft version of this paper (dated 10 March, 2000),
we made the erroneous claim that the backwards axiom is
strictly stronger than Component Assignment, because of
the latter’s seemingly restricted form. However, Reynolds
has pointed out that the axioms are of equal strength, if
we include the rule of consequence and consider an instance
of Component Assignment with an occurrence of −∗ to the
right of ∗, using again the “update as deletion followed by
extension” idea.{

∃xy. (E 7→ x, y) ∗ ((E 7→ E′, y)−∗ P)
}

E.1 := E′{
∃xy. (E 7→ E′, y) ∗ ((E 7→ E′, y)−∗ P)

}{
∃xy. P

}{
P
}

The second-last step uses the consequence A ∗ (A−∗P) |=
P , and the fact that consequence is valid under ∃. The
∃ can be eliminated in the final step because x and y are
not free in P . So, although the backwards form of the axiom
expresses the weakest precondition directly, the two versions
are interderivable.

We next discuss a curious point about the interpretation
of triples. We have allowed commands to be applied to states
with dangling pointers, which are states that mention loca-
tions not in the domain of the current heap. In contrast,

in [35] commands are only applied to states in which there
are no dangling pointers; dangling pointers arise only during
the evaluation of assertions.

The difference between these interpretations of triples is
significant in the case of cons. For example,

{true}x := cons(1, 2){¬(x = y)}

is true under a no-dangling interpretation of triples, but not
under the interpretation we have adopted. The reason is
that if there are no dangling pointers then the operational
rule for cons allocates a location that is not the contents
of any stack variable, but in the dangling case a location
might be allocated that is already the contents of some stack
variable.

This indicates that the Cons axiom is not complete un-
der the no-dangling interpretation of triples. (This remark
applies equally to the classical semantics and to the intu-
itionistic semantics presented later.) For, the example triple
above is not derivable from the forwards Cons axiom, which
simply gives us

{true}x := cons(1, 2){true ∗ x 7→ 1, 2}

the postcondition of which is equivalent to x ↪→ 1, 2.
One way to react to this incompleteness is to say that since

dangling pointers never arise during program execution (for
the programs considered so far), we should interpret the rule
of consequence as an implication which holds in states where
there is no dangling. That is, rule out dangling pointers at
the top level, so to speak, but allow them when delving into
subformulae involving ∗ or −∗ . Another reaction, which we
follow up on here, is to see dangling pointers as a natural
characteristic of languages which allow memory to be ma-
nipulated on a low level; we elaborate on this point in the
next section.

To describe a backwards axiom for cons, suppose we are
given an arbitrary postcondition P . In the precondition we
would like to say that P will be true if we extend the heap
with a new location, which is initialized appropriately. We
can express this using ∀ to quantify over locations, indicat-
ing that any one will do, together with −∗ for guaranteeing
newness.

Backwards Cons

Suppose that x′ is not free in E1, E2 or P . Then{
∀x′. (x′ 7→ E1, E2)−∗P [x′/x]

}
x := cons(E1, E2){
P
}

In case x is not free in E1 or E2 we can simply quantify
over x in the above. For example, ∀x. (x 7→ 1, 2)−∗P is the
precondition for x := cons(1, 2).

If C is a command and Q a formula, then the weakest
precondition is defined as follows.

s, h ∈ wp(C,Q) just when

C, s, h is safe and if C, s, h ;∗ s′, h′

then s′, h′ |= Q

We are not extending the syntax of formulae here, but are
simply defining wp(C,Q) as a set of stack-heap pairs. (With
this definition we should perhaps speak of weakest liberal
preconditions; but partial and total correctness coincide for
the basic commands that we are considering.)

www.manaraa.com

In the following result the “backwards axioms” are con-
sidered to be those from this section, along with Simple As-
signment and Object-component Lookup.

Theorem 4. The weakest precondition for each atomic
statement is expressed by the corresponding backwards ax-
iom.

For a sequence C of assignment statements it follows that
{P}C{Q} is derivable from the basic axioms (in either the
Reynolds or backwards forms), Sequencing, and Consequence
exactly when it is true. (Extending this result to loops would
get us into the issue of expressiveness [10], which is outside
the scope of our concerns here.)

The following notation will be convenient: if ` ∈ dom(h)
then let h@` denote the singleton heap in which ` is mapped
to h(`); also, let h− ` denote the heap like h except that it
is undefined on `. It is evident that h = (h@`) · (h− `) when
` ∈ dom(h).

Proof . We only give the proofs for the heap-altering com-
mands E.i := E′ and x := cons(E1, E2).

For soundness of Backwards Component Assignment , as-
sume that s, h satisfies the precondition. The precondition
ensures [[E]]s = ` ∈ dom(h) is a defined location, and so the
assignment statement does not get stuck. By the seman-
tics of E.i := E′ we need to show that s, h′ |= P , where
h′ = [h | ` 7→ 〈[[E′]]s, v2〉] and h(`) = 〈v1, v2〉. From the
assumption and the semantics of ∃ we get that

s′, h |= (E 7→ x, y) ∗ ((E 7→ E′, y)−∗P)

for the extension s′ of s which binds x to v1 and y to v2.
Then, from the definitions of ∗ and 7→, we get that

s′, h@` |= (E 7→ x, y)
s′, h− ` |= (E 7→ E′, y)−∗P.

The semantics of −∗ then implies that s′, (h − `) · [` 7→
〈[[E′]]s, v2〉] |= P and, since h′ = (h−`) · [` 7→ 〈[[E′]]s, v2〉], we
get s′, h′ |= P. The stack s′ can be replaced by s, because x
and y are not free in P , and we are done.

For completeness, assume that s, h ∈ wp(E.i := E′, P).
From the safety part of wp we get that [[E]]s = ` ∈ Loc for
some ` ∈ dom(h). Suppose h(`) = 〈v1, v2〉. We claim that

[s | x 7→ v1, y 7→ v2], h |= (E 7→ x, y) ∗ ((E 7→ E′, y)−∗P)

The singleton heap h@` makes the left conjunct true. That
h−` satisfies the right conjunct follows from the wp assump-
tion, which implies that P is true if we update the original
heap h by mapping the first component of ` to [[E′]]s. That
is, the semantics of −∗ and of the instance of 7→ to its left
conspire to ensure that h−` satisfies the right conjunct. The
clauses for ∃ and ∗ imply that s, h satisfies the precondition.

For soundness of Backwards Cons, assume that s, h satis-
fies the precondition. By the operational rule for allocation
we need to show [s | x 7→ `], [h | ` 7→ 〈v1, v2〉] |= P when
` 6∈ dom(h), [[E1]]s = v1, and [[E2]]s = v2. We know that
[s | x′ 7→ `], [h | ` 7→ 〈v1, v2〉] satisfies P [x′/x], from the
definitions of −∗ , 7→ and ∀. The result then follows using
standard lemmas about renaming variables and removing
from a state those not appearing freely in an expression.

For completeness, assume s, h ∈ wp(x := cons(E1, E2), P).
From the operational rule for cons, we obtain that

[s | x 7→ `], [h | ` 7→ 〈[[E1]]s, [[E2]]s〉] |= P

for any location ` 6∈ dom(h) (non-determinism of ; is being
used here). That s, h satisfies the precondition then follows
immediately from this and the definitions.

End of Proof

6. DISPOSE
All of the axioms we have considered so far are compatible

with the presence of dangling pointers, and dangling point-
ers play an important role in the interpretations of ∗ and −∗ .
We might as well push this further and consider a command
dispose(E) which deallocates a location (thereby creates a
dangling pointer).

The semantics of dispose is a slippery subject, and what
happens on subsequent attempts to dereference a disposed
location tends to be “undefined” by programming language
definitions. Operationally, we take the position that dispose
simply removes a location from the heap.

` ∈ Loc ` ∈ dom(h) [[E]]s = `

dispose(E), s, h ; s, (h− `)

Recall that h− ` is h with ` removed.
We do not wish to enter into a controversy over how well

this models “undefined”. Indeed, there may be no definitive
operational semantics of dispose, and it is perhaps better
treated from an axiomatic perspective.

Dispose
Suppose that a, b are not free in E. Then,{

P ∗ ∃ab. (E 7→ a, b)
}

dispose(E){
P
}

This axiom takes the view that you simply shouldn’t depend
on what contents the disposed location might or might not
have in the postcondition.

Reasoning backwards from true we can find circumstances
under which a program is safe to execute. For a double dis-
pose we obtain false as the precondition as expected, indi-
cating that the program is not safe to execute for any start
state.

{false}
{true ∗ ∃ab. (x 7→ a, b) ∗ ∃cd. (x 7→ c, d)}
dispose(x)
{true ∗ ∃ab. (x 7→ a, b)}
dispose(x)
{true}

Proposition 5. The Dispose axiom expresses the weak-
est precondition.

Proof . For soundness, assume the precondition holds for
s, h. The precondition ensures [[E]]s = ` ∈ dom(h) is a
defined location, so the command does not get stuck. The
result of the dispose statement is the pair s, h − `, and we
need to show that s, h − ` |= P . This follows using the
definitions of ∃, ∗ and 7→,

For completeness, assume s, h ∈ wp(dispose(E), P). From
the operational rule and the definition of wp, which requires
safety, we obtain that [[E]]s = ` ∈ dom(h) is a location that
points to something, say 〈v1, v2〉, and that s, h − ` |= P . It
is clear that

[s | x 7→ v1, y 7→ v2], h@` |= E 7→ x, y

www.manaraa.com

so, by the semantics of ∃ and ∗, and the assumption that
x, y 6∈ free(P), we obtain that s, h satisfies the precondition
as required.

End of Proof

7. A SMALL EXAMPLE
We give a small example: a program for disposing a list.

To formulate the precondition, we use an inductive definition
of a predicate rep n E, which says that E represents a list
of size n.

rep 0 E
∆⇐⇒ E = nil ∧ emp

rep n+ 1 E
∆⇐⇒ ∃xy. (E 7→ x, y) ∗ repn y.

Then E points to a non-circular linked list when rep n E
holds for some n, and we define

nclistE
∆⇐⇒ ∃n. rep n E.

Note that this definition just says that E points to a list,
and ignores head links; variations are possible.2

The specification for the program says that, if p points
to a list to begin with, then the program will (assuming
it terminates) delete all the cells, resulting in the empty
heap. (The presence of emp in the base case of the inductive
definition is necessary for this.)

{nclist p}
while p 6= nil do

q := p; p := p.2; dispose(q)
{emp}

Now, we use the usual Hoare partial-correctness rule for
while loops, where we choose the precondition as the invari-
ant. A proof outline for the body is

{p 6= nil ∧ nclist p}
{∃p0.∃x. (p 7→ x, p0) ∗ nclist p0}
{∃p0.∃x. (p ↪→ x, p0) ∧

(
(nclist p0) ∗ ∃ab. (p 7→ a, b)

)
}

q := p
{∃p0.∃x. (p ↪→ x, p0) ∧

(
(nclist p0) ∗ ∃ab. (q 7→ a, b)

)
}

p := p.2
{(nclist p) ∗ ∃ab. (q 7→ a, b)}
dispose(q)
{nclist p}

In the second line we have listed an intermediate step used
in applying the rule of consequence.

To complete the proof, combining the negation of p 6= nil

with the invariant we obtain

p = nil ∧ nclist p

as a valid postcondition for the whole program. This im-
plies emp by the definition of rep and so, by the rule of
consequence, we are done.

8. LOCALITY OF SPECIFICATIONS AND
REASONING

Consider again the specification of the program to dispose
a list.

2We have not included recursive definitions in the formal
syntax, but the intent should be clear. In any case, we will
be somewhat less formal here, and in particular use a ∃n for
quantifying over natural numbers only.

{nclist p} · · · {emp}

The first thing to notice here is the exact nature of the
precondition: if nclist p is true then there can be no cells
in the current heap other than those in the list pointed to
by p. That is, nclist p holds of a structure

r

r r?
- -- nil.....

p

but not of a heap with additional nodes not in the list. It is
possible for one of the head nodes to contain a pointer, but
that pointer must either be to one of the nodes in the list
or be dangling.

This exact nature comes about because of the use of emp in
the base case of rep, and also because of the exact nature of
7→. In fact, such an exact specification is necessary, because
if there were “junk cells”, cells in the heap but not in the list,
then we could not conclude emp on termination. Here “junk”
is relative: it just means cells that are not relevant to the
correct operating of the program, not necessarily garbage
cells.

The second thing to note is that these junk cells have
been avoided without talking about them explicitly in the
definition of nclist p. Normally, one would have to include
an auxiliary clause which says “for all cells, if that cell is in
the heap it is in the list”. But we did not need to.

However, there appears to be a problem with the speci-
fication: what if we want to run the program when there
are extra cells around? The specification appears not to be
strong enough. Intuitively, however, we have verified ex-
actly the correct property: the precondition mentions only
those cells which are accessed by the program during execu-
tion. Why should we have to mention others? This section
explains why we don’t have to.

The basis for our approach is a local property of specifi-
cations, which we state informally as follows.

If {P}C{Q} holds, then execution of C in a state
satisfying P can attempt to dereference only those
heap cells guaranteed to exist by P .

Conventionally, the assumption is that a pre/post specifi-
cation makes a positive statement about alterations to the
store that can be made, but additional changes are allowed:
this leads to the need for explicit frame axioms, which say
what doesn’t change. The formalism here turns the situa-
tion around, by restricting the alterations (to the heap) that
can be made to be those specifically mandated by the spec-
ifications. Explicit provision is then required to sanction
changes, instead of to disallow them.

In this section we investigate these ideas by examining a
rule, Frame Axiom Introduction.

8.1 Local/Global Interaction
The discussion above is concerned exclusively with the

heap. For all we know, if {x ↪→ 1, 2}C{x ↪→ 3, 2} holds
then C might change a stack variable z. For example, z :=
7;x.1 := 3 satisfies the specification. So, in order to state

www.manaraa.com

the rule for frame axiom introduction, we need to keep track
of stack variables altered by a program. We do this with a
syntactic condition.

Define ModifiesOnly(C) to be the set of (free)
variables appearing alone to the left of := in C.

The qualification “alone” means, for example, that the set
ModifiesOnly(x.i := E) is empty: ModifiesOnly is concerned
with modifications to stack variables only here.

Frame Axiom Introduction

{P}C{Q}
{P ∗R}C{Q ∗R}

ModifiesOnly(C) ∩ free(R) = ∅

It is important to see that we cannot use ∧ instead of ∗,
as the resulting rule is unsound. More positively, using this
rule we can perform an inference

{(x ↪→ 1, 2)}C{(x ↪→ 3, 2)}
{(x ↪→ 1, 2) ∗ (z ↪→ 7, 11)}C{(x ↪→ 3, 2) ∗ (z ↪→ 7, 11)}

as long as we know that C doesn’t modify the stack variable
z. We use ∗ here to identify a portion of the heap that is
not modified.

The soundness of Frame Axiom Introduction can be shown
for assignment statements, sequencing, looping, and condi-
tionals. A thorough theoretical account of this rule and its
consequences will be presented in a future paper [27].

8.2 Framing Procedure Specifications
Frame axioms take on greater importance in the presence

of procedures, where one wants to be able to specify a pro-
cedure without referring to its code [2]. We give a brief
discussion of procedures in light of the above.

Let us regard the program for disposing a list as a pro-
cedure, parametric in p, and where the auxiliary variable
q is local. To specify DisposeList we should give not only
the precondition and postcondition, but also a ModifiesOnly
clause.

{nclist p} DisposeList(p) {emp}
ModifiesOnly(DisposeList(p)) = {p}

We claim that just using the local specification, which only
mentions those heap cells touched by the program, we can
infer properties of calls in wider contexts. A good example of
this is when we chain two calls to DisposeList, to dispose of
two different lists. Then, using Frame Introduction together
with Sequencing and Consequence, we can infer that the two
calls work properly, as long as the input lists don’t overlap.{

nclist p
}

DisposeList(p)
{
emp
}{

(nclist p) ∗ (nclist q)
}

DisposeList(p)
{
emp ∗ nclist q

}{
(nclist p) ∗ (nclist q)

}
DisposeList(p)

{
nclist q

}
Then, the specification

{
nclist q

}
DisposeList(q)

{
emp
}

to-
gether with the usual Hoare rule for sequencing gives us{

(nclist p)∗(nclist q)
}

DisposeList(p); DisposeList(q)
{
emp
}

as desired. Conventionally, an explicit frame axiom would
be needed to sanction a conclusion of this sort, because oth-
erwise we would have no way of knowing that DisposeList(p)
doesn’t alter the list pointed to by q. (For instance, if the

first call were to incorrectly dispose of one of the nodes in
q’s list, then we would get a safety violation in the second.)
The same principle works when we chain together calls to
different procedures, such as procedures for inserting into,
deleting from, or copying lists.

It is important to realize that the use of ∗ in the con-
junction (nclist p) ∗ (nclist q) is not simply a reachability
condition, which states, say, that the cells reachable from
p and q are disjoint. For instance, (nclist p) ∗ (nclist q)
holds of

r

rr r

rr r

r

r

?

?
- --

- --

6

6

nil

4 nil

p

q

.....

.....

Here, it is certainly possible to reach one list from the other,
by following head links, but this does not cause a runtime
error in DisposeList(p); DisposeList(q).

9. THE INTUITIONISTIC SEMANTICS
In this section we consider an intuitionistic semantics. All

assertions will satisfy the

Monotonicity Condition: If s, h |= P and h v h′

then s, h′ |= P ,

where h v h′ indicates that the graph of h is a subset of the
graph of h′. Formally, the intuitionistic language is obtained
by omitting emp, adding clauses for intuitionistic connectives
that cannot be defined away

s, h |= P ∧Q iff s, h |= P and s, h |= Q

s, h |= P ∨Q iff s, h |= P or s, h |= Q

s, h |= ∀x.P iff ∀v ∈ V al. [s | x 7→ v], h |= P

and making two redefinitions:

s, h |= E 7→ E1, E2 iff [[E]]s ∈ dom(h)
and h([[E]]s) = 〈[[E1]]s, [[E2]]s〉

s, h |= P ⇒ Q iff ∀h′ w h .
if s, h′ |= P then s, h′ |= Q.

The other semantic clauses are as in Section 3.1.3 To see why
the law of the excluded middle fails in this model, consider

3Intuitionistic ∀ usually quantifies over “future” possible
worlds, but in a fixed-domain semantics (where the same
individuals exist at each world) the pointwise definition re-
mains adequate. Also, in the clause for ∗ one might have
expected to see a condition h0 · h1 v h instead of asking

www.manaraa.com

(x 7→ 2, 2) ∨ ¬(x 7→ 2, 2), where ¬P = P ⇒ false. If s is a
stack with sx = ` and [] is the empty heap, then s, [] 6|= x 7→
2, 2. But we also have s, [] 6|= ¬(x 7→ 2, 2), since there is an
extension [` 7→ 2, 2] of [] where s, [` 7→ 2, 2] |= x 7→ 2, 2. So
s, [] 6|= (x 7→ 2, 2) ∨ ¬(x 7→ 2, 2).

The semantic consequence relation and interpretation of
triples are defined as before. Some of the basic properties of
the logic are altered by the intuitionistic semantics.

Proposition 6. Propositions 1 and 2 go through for the
intuitionistic semantic of this section, with the following
changes:

• The semantics validates intuitionistic rather than clas-
sical logic, so that excluded middle fails generally;

• true is the unit of ∗;

• Weakening for ∗ holds: A ∗B |= A;

• Excluded middle holds for pure assertions;

• P ∗Q and P ∧Q are equivalent if P is pure, even when
Q is not.

A useful observation is that the classical and intuitionis-
tic interpretations behave similarly when 7→ appears as an
immediate constituent of ∗. To formulate this, recall that if
` ∈ dom(h) then we use h@` to denote the singleton heap
in which ` is mapped to h(`) .

Lemma 7. [Exactness Lemma]

s, h |= (E 7→ E1, E2) ∗ P

in the intuitionistic semantics iff there is some ` ∈ dom(h)
such that

s, h@` |= (E 7→ E1, E2), and
s, h− ` |= P .

Thus, even though the intuitionistic semantics uses an in-
exact interpretation of 7→, we can get away with the exact
interpretation when looking at one occurrence of 7→ in an
argument to ∗. This explains why it is possible to use ei-
ther of the intuitionistic or classical semantics for the same
program-proving axioms.

Theorem 8. The weakest precondition results hold for
the intuitionistic semantics.

Of course, this result has a different import than the previ-
ous ones, because it refers exclusively to intuitionistic propo-
sitions, that are invariant under heap extension. The only
alterations to the previous proofs involve an appeal to the
Exactness Lemma in several places, and appeals to mono-
tonicity in some situations where it was not needed in the
argument for classical semantics (the completeness parts of
Backwards Cons and Backwards Object-component Assign-
ment).

We can compare the two semantics by noting that we can
translate from the intuitionistic language into the classical
one using a modal translation. We do not actually need to
extend the classical language with an explicit modality to do
this, because we can already express the necessity modality
for heap extension. That is,

for equality: but the monotonicity condition, together with
the fact (true of the particular model here) that h0 · h1 v h
when h bounds each, implies that the two definitions are
equivalent.

s, h |= true−∗P iff ∀h′ w h. s, h′ |= P

holds in the classical semantics.

The Modal Translation. The translation (·)◦ sends

E 7→ E1, E2 to E ↪→ E1, E2

P ⇒ Q to true−∗ (P ◦ ⇒ Q◦)

and everything else (inductively) to itself.4

Proposition 9. s, h |= P in the intuitionistic semantics
iff s, h |= P ◦ in the classical semantics.

So, the classical semantics is, in this sense, the more ex-
pressive of the two. More to the point, the intuitionistic
semantics has an additional condition, monotonicity, and
we should ask whether there are any properties of interest
that do not satisfy it.

It turns out that many natural pre- and postconditions
for pointer algorithms do satisfy monotonicity. Often, one
makes a positive statement to the effect that a collection of
cells in the heap represents some abstract data structure,
and these cells continue to represent the structure when
more cells are added. Still, there are some natural prop-
erties that do not satisfy monotonicity. An example is given
by the rep and nclist predicates from Section 7. There, the
use of emp in the base case of rep has the effect of limiting a
heap satisfying nclistE to exactly those cells reachable, by
following tail links, from E; this was essential for showing
that all of the cells were de-allocated. Other typical prop-
erties of this sort are that there is a unique pointer (in the
heap) to cons cell x, or that the heap has exactly 4 cons cells.
Generally, non-monotone properties are useful in situations
where one is concerned with close control over memory us-
age, such as when ensuring that there are no space leaks.

We conclude this section by contrasting the two semantics
using a subtle example from [35], the following instance of
the Cons axiom:{

¬∃x. x 7→ 1, 2
}

y := cons(1, 2){
(¬∃x. x 7→ 1, 2) ∗ (y 7→ 1, 2)

}
.

At first sight it looks as if the triple should be false, because
the postcondition appears to be inconsistent. The intuition-
istic semantics saves the situation by making the precon-
dition inconsistent as well. To see why, consider any s, h.
We can extend h with a location ` 6∈ dom(h), and obtain
[h | ` 7→ 〈1, 2〉]. Since this heap extends h, the intuitionis-
tic negation quantifies over it. And in this extended heap,
∃x. x 7→ 1, 2 is true.

The same triple holds as well in the classical semantics,
but the reason now is not that the precondition is false, but
rather that the postcondition is not inconsistent. That is,
¬∃x. x 7→ 1, 2 may be true of a small world but false at a
bigger one, and the ∗ in the postcondition lets us pick this
smaller world out without incurring falsity at the big world.
For example, in the singleton heap where the a location
denoted by x has contents 〈1, 2〉 the empty heap can be

4This translation uses the induced modality less often than
one might have expected. Normally, one would use the
modality with ∀ as well, and a backwards modality in the
case of ∗. It is specific properties of the model (constant
domain, bounding properties of ·) that justify the simpler
translation.

www.manaraa.com

selected for ¬∃x. x 7→ 1, 2 and the singleton heap itself for
x 7→ 1, 2.

The absence of Weakening in the classical semantics is
significant here. For, if we had

(¬∃x. x 7→ 1, 2) ∗ (y 7→ 1, 2) |= ¬∃x. x 7→ 1, 2, and

(¬∃x. x 7→ 1, 2) ∗ (y 7→ 1, 2) |= y 7→ 1, 2

then we could obtain

(¬∃x. x 7→ 1, 2) ∗ (y 7→ 1, 2) |= (¬∃x. x 7→ 1, 2) ∧ (y 7→ 1, 2),

the consequent of which is contradictory.

10. SUMMARY AND RELATED WORK
The most relevant related work is contained in the two

main precursors, the papers of Burstall and Reynolds [5, 35].
To summarize our additions to [35], we have: (i) provided a
classical model, and investigated the relation between classi-
cal and intuitionistic variants; (ii) added BI’s spatial impli-
cation −∗ to the assertion language, and used it to express
weakest preconditions; (iii) given a treatment of dispose;
and (iv) further explicated the form of local reasoning made
possible by the spatial approach to pointer logic.

There have been a number of papers on program-proving
for pointers ([16, 30, 23, 17, 22, 11, 3, 6] is a partial list).
What sets the approach of Reynolds and Burstall apart is
its local treatment of assignment. In other approaches as-
signment in the presence of aliasing tends to be dealt with
using global store parameters, or several global parameters,
or with axioms that involve major surgery on formulae. In
contrast, in {P ∗ (x 7→ a, b)}x.1 := z{P ∗ (x 7→ z, b)} the op-
erationally local nature of assignment is mirrored beautifully
in the logic.

There has been growing interest in using program logic for
pointers in static analysis and related problems, and some
excellent results have been obtained [18, 24, 37, 40]. The
work here appears to be largely complementary. Indeed, al-
though the devil is in the detail, it would be conceivable to
combine one of these assertion languages with a substruc-
tural logic, in the style of BI. The main question is whether
such a combination would give rise to local reasoning or
specifications, in a way that does not interfere with the al-
ready successful properties of these languages.

We described the local character of specifications in the
logic, and began an exploration of its consequences by con-
sideration of the rule for introducing frame axioms. There
are many vaguely related ideas in dozens of papers in the AI,
modal and temporal logic of processes, and program specifi-
cation literatures; we cannot do justice to these literatures in
this short space (we mention only one from each strand: [33,
20, 1]). The main point, however, is the implicit and succinct
way that behind-the-scenes dependencies, which arise from
pointers that are not directly named by program variables,
are dealt with using ∗. We are not aware of a previous ap-
proach that deals with these dependencies in a comparable
manner. That being said, there is much more to be learnt
about local reasoning; some further developments will be
presented in a followup paper [27]. In addition, it would be
interesting to attempt to apply these ideas in related situa-
tions where aliasing is prevalent, such as π-calculus or object
calculi.

In the linear logic literature there have been numerous
hints, suggesting that substructural logic can be used to

specify and reason about actions locally (e.g. [13, 21]).
While this proposal was tantalyzing, it has not subsequently
been developed very far, certainly not as far as a program
logic for pointers. (Encodings of the semantics of impera-
tive languages, e.g. [9], are important and useful, but fall
well short of program logic.) The results of this paper might
be interpreted as offering fresh justification for those early
hints, and in the demanding territory of pointers, albeit for
a logic that is different from linear logic in key respects.
A feature of BI is that it offers a simple-minded treatment
of additive connectives (based on classical or intuitionistic
logic) alongside substructural ones; there is no “!”, and no
need to stay within a constructive setup. This comparative
simplicity, as illustrated by the pointer model, is a key to
applications.

There are two other closely related pieces of work to report
on. The first is work of Cardelli and Gordon on Ambient
Logic [8], a logic for mobile ambients. Their logic can be
seen as an extension of Boolean BI; on the common connec-
tives, the semantic models of Ambient Logic that have been
presented are instances of the possible worlds semantics of
BI first presented in [25] and further developed in [26, 32].
Ambient logic also has a connective, the “ambient match”,
which interacts with ∗ in a way that leads to pleasantly
compact and intuitive specifications of certain properties of
mobile processes.

In an interesting further development, Cardelli and Ghelli
have proposed a labelled tree model as a basis for a query
language for semi-structured data [7]. The tree model is
similar to the pointer model of BI, but for two main differ-
ences: the model here allows for circular structures as well
as trees; and, the combining operation here is partial, where
in the labelled tree model it is total. Partiality enables us
to ensure that subheaps are disjoint, and this is essential
for the soundness of the Hoare triple axioms. We speculate
that the ideas in this paper, especially those involving the
interaction between ∗ and −∗ , might be adapted to account
for update or reconfiguration of semi-structured data.

The second closely related work is that of Smith, Walker,
and Morrisett on Alias types [38, 39]. Alias types use type-
theoretic cousins of the conjunction ∗ and points-to relation
7→ to state properties of data structures. The resulting typ-
ing rule for component assignment is very close to (a CPS
version of) Reynolds’s axiom, and their treatment of mem-
ory disposal is very near to that here. Of course, the benefit
of a type system is that it is static, while conversely logic is
more expressive. In any case, the remarkable convergence of
ideas in spatial pointer logic and in Alias types might per-
haps be taken as a positive indication, of the naturalness of
the approach.

Acknowledgements

We are grateful to David Pym, Uday Reddy and John
Reynolds for advice and comments that helped to improve
the material in this paper. This research was supported by
a grant from the EPSRC.

www.manaraa.com

11. REFERENCES

[1] Alur, R., and Grosu, R. Modular refinement of
hierarchic reactive machines. In POPL [31].

[2] Borgida, A., Mylopoulos, J., and Reiter, R. On the
frame problem in procedure specifications. IEEE
Transactions of Software Engineering 21 (1995), 809–838.

[3] Bornat, R. Proving pointer programs in Hoare logic. In
Fifth Internationsl Conference on Mathematics of Program
Construction, LNCS 1837, Ponte de Lima, Portugal, 2000.

[4] Brookes, S., Main, M., Melton, A., and Mislove, M.,
Eds. Mathematical Foundations of Programming
Semantics, Eleventh Annual Conference (Tulane
University, New Orleans, Louisiana, March 29–April 1
1995), vol. 1 of Electronic Notes in Theoretical Computer
Science, Elsevier Science.

[5] Burstall, R. Some techniques for proving correctness of
programs which alter data structures. Machine Intelligence
7 (1972), 23–50.

[6] Calcagno, C., Ishtiaq, S., and O’Hearn, P. Semantic
analysis of pointer aliasing, allocation and disposal in
Hoare logic. Proceedings of the 2nd international ACM
SIGPLAN conference on on Principles and practice of
declarative programming, 2000.

[7] Cardelli, L., and Ghelli, G. A query language for
semistructured data based on the ambient logic.
Manuscript, 4 April 2000.

[8] Cardelli, L., and Gordon, A. D. Anytime, anywhere.
modal logics for mobile ambients. In POPL [31].

[9] Cervesato, I., and Pfenning, F. A linear logical
framework. In Proceedings of the Eleventh Annual
Symposium on Logic in Computer Science — LICS’96
(27–30 July 1996), IEEE Computer Society Press,
pp. 264–275.

[10] Cook, S. A. Soundness and completeness of an axiomatic
system for program verification. SIAM J. on Computing 7
(1978), 70–90.

[11] de Boer, F. A WP calculus for OO. In Proceedings of
FOSSACS’99 (1999).

[12] Girard, J.-Y. Linear logic. Theoretical Computer Science
(1987), 1–102.

[13] Girard, J.-Y. Towards a geometry of interaction. In
Categories in Computer Science and Logic (1989),
American Mathematical Society, pp. 69–108.
Contemporary Mathematics Volume 92.

[14] Guttag, J., Horning, J., and Wing, J. Larch in five easy
pieces. TR 5, DEC Systems Research Center, 1985.

[15] Hoare, C., and He, J. A trace model for pointers and
objects. In ECCOP’99 - Object-Oriented Programming,
13th European Conference (1999), R. Guerraoui, Ed.,
pp. 1–17. Lecture Notes in Computer Science, Vol. 1628,
Springer.

[16] Hoare, C. A. R., and Wirth, N. An axiomatic definition
of the programming language Pascal. Acta Informatica 2
(1973), 335–355.

[17] Honsell, F., Mason, I. A., Smith, S., and Talcott, C.

A variable typed logic of effects. Information and
Computation 119, 1 (may 1995), 55–90.

[18] Jenson, J., Jorgensen, M., Klarkund, N., and

Schwartzback, M. Automatic verification of pointer
programs using monadic second-order logic. In Proceedings
of the ACM SIGPLAN’97 Conference on Programming
Language Design and Implementation (1997), pp. 225–236.
SIGPLAN Notices 32(5).

[19] Kripke, S. A. Semantical analysis of intuitionistic logic I.
In Formal Systems and Recursive Functions, J. N.
Crossley and M. A. E. Dummett, Eds. North-Holland,
Amsterdam, 1965, pp. 92–130.

[20] Leino, K. Toward Reliable Modular Programs. Ph.D.
thesis, California Institute of Technology, Pasadena,
California, 1995.

[21] Miller, D. Observations about using logic as a
specification language. In GULP-PRODE’95 – Joint
Conference on Declarative Programming (Marina de
Vietri, Salerno, Italy, September 1995).

[22] Moller, B. Calculating with pointer structures. In
Proceedings of Mathematics for Software Construction,
(1997), Chapman and Hall, pp. 24–48.

[23] Morris, J. A general axiom of assignment. Assignment
and linked data structure. A proof of the Schorr-Waite
algorithm. In Theoretical Foundations of Programming
Methodology (1982), M. Broy and G. Schmidt, Eds.,
Reidel, pp. 25–51.

[24] Necula, G. Proof-carrying code. In In Proceedings of the
24th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Langauges (POPL ’97) (1997).

[25] O’Hearn, P., and Pym, D. The logic of bunched
implications. Bulletin of Symbolic Logic 5, 2 (June 99),
215–244.

[26] O’Hearn, P., Pym, D., and Yang, H. Possible worlds and
resources: The semantics of BI. Submitted, October 2000.

[27] O’Hearn, P., and Yang, H. Local reasoning about pointer
programs using bunched implications. In Preparation, 2000.

[28] O’Hearn, P. W., Power, A. J., Takeyama, M., and

Tennent, R. D. Syntactic control of interference revisited.
Theoretical Computer Science 228, 1-2 (October 1999),
211–252. Preliminary version in [4] and in [29], vol 2.

[29] O’Hearn, P. W., and Tennent, R. D., Eds. Algol-like
Languages. Two volumes, Birkhauser, Boston, 1997.

[30] Oppen, D. C., and Cook, S. A. Proving assertions about
programs that manipulate data structures. In Conference
Record of Seventh Annual ACM Symposium on Theory of
Computation (Albuquerque, New Mexico, 5–7 May 1975),
pp. 107–116.

[31] Conference Record of the 27th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (2000), ACM, New York.

[32] Pym, D. The semantics and proof theory of the logic of
bunched implications. Monograph in Preparation, 2000.
See http://www.dcs.qmw.ac.uk/ ˜ pym.

[33] Reiter, R. The frame problem in the situation calculus: a
simple solution (sometimes) and a completeness result for
goal regression. In V. Lifschitz, editor, Artificial
Intelligence and Mathematical Theory of Computation:
Papers in Honor of John McCarthy, pages 359–380.
Academic Press, 1991.

[34] Reynolds, J. C. Syntactic control of interference. In
Conference Record of the Fifth Annual ACM Symposium
on Principles of Programming Languages (Tucson,
Arizona, January 1978), ACM, New York, pp. 39–46. Also
in [29], vol 1.

[35] Reynolds, J. C. Intuitionistic reasoning about shared
mutable data structure. In Millenial Perspectives in
Computer Science, Palgrove, 2000.

[36] Reynolds, J. C. Lectures on reasoning about shared
mutable data structure. IFIP Working Group 2.3
School/Seminar on State-of-the-Art Program Design Using
Logic. Tandil, Argentina, September 2000.

[37] Sagiv, M., Reps, T., and Wilhelm, R. Parametric shape
analysis via 3valued logic. In POPL’99.

[38] Smith, F., Walker, D., and Morrisett, G. Alias types.
Proceedings of ESOP’99.

[39] Walker, D., and Morrisett, G. Alias types for recursive
data structures. Manuscript, April 2000.

[40] Xu, Z., Miller, B., and Reps, T. Safety checking of
machine code. In PLDI’00.

